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LETTER TO THE EDITOR 
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hierarchical structure 
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t Dipartimento di Fisica dell’universiti, Padova, Italy and International School for 
Advanced Studies, Tneste, Italy 
$ INFN, Sezione di Padova, Italy 
4 Unita GNSM del CNR e CISM, Padova, Italy 

Received 24 September 1985, in final form 23 December 1985 

Abstract. A model of diffusion in one dimension, with a hierarchical pattern of hopping 
rates, is studied by an exact renormalisation method. Non-universal time scaling exponents 
are obtained for autocorrelation function, range and average diffusion distance. 

In a recent paper, Huberman and Kerszberg (1985) propose a model for relaxation in 
hierarchical structures, which they expect to display an anomalous decay process, 
termed ultradiffusion. As these authors remark, systems having a whole hierarchy of 
time scales appear in several fields, ranging from molecular diffusion on complex 
macromolecules (Austin et a1 1975), to spin glasses (Sompolinsky 1981), or computing 
structures (Huberman and Hogg 1984). 

In the present letter, we show that the model of Huberman and Kerszberg (1985) 
actually allows for an exact dynamical renormalisation group treatment. The approach 
presented here provides a complete description of the scaling properties associated 
with ultradiffusion at long times, and thus a rigorous check of previous approximate 
and numerical predictions (Huberman and Kerszberg 1985); this approach should also 
stimulate additional interest in the model itself, in view of the wide range of physical 
situations which its mathematics is expected to exemplify. 

Following Huberman and Kerszberg (1985), let us consider the diffusion of a 
particle in the one-dimensional environment schematically represented in figure 1. The 
vertical segments in the figure represent energy barriers, which obstruct the hopping 
of the particle from a given cell to its nearest neighbours. The length of each segment 
is inversely proportional to the probability, E ~ ,  that the barrier is crossed in unit time 
(i.e. the taller the energy barrier, the smaller E ~ ) .  

Diffusion on such a hierarchical structure has been termed ultradiffusion by Huber- 
man and Kerszberg (1989, with emphasis on the fact that hierarchical systems possess 
an ultrametric topology (Bourbaki 1966). 

Denoting by P m ( t )  the probability that the particle occupies cell m at time r, and 
by p m ( w )  its Laplace transform, a system of equations of the form - .. - I 

wPm = am+l,m(Pm+l-Pm)+am-,,m(Pm-,-Pm)+Sm,o (1) 

describes the diffusion. In equation (1) the term specifies the initial condition: 
the particle is assumed to be in cell 0 at the initial time, i.e. Pm( t = 0) = For each 
couple of nearest-neighbour cells, m and m + 1, a (  m, m + 1) takes the appropriate 
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n - 1  n n + l . .  . . . . . . . . . . 
Figure 1. Cells with crosses are decimated in the present renormalisation scheme. 

value, E ~ ,  of the hopping rate associated with the corresponding barrier (to avoid 
confusion we will use labels i or j exclusively to specify hopping rates across barriers 
in our hierarchy; for simplicity we will also put E ~ =  1, for the lowest barrier, which 
amounts to fixing the unit of time). 

The renormalisation group approach we propose amounts to a dynamical decima- 
tion of (l), carried out in such a way as to leave its basic structure invariant. With 
reference to figure 1, imagine that we eliminate from the linear system (1) all the values 
of P corresponding to cells marked by crosses. With such an elimination, the ‘surviving’ 
P values, after a proper rescaling and redefinition of w, satisfy a system of the same 
form as ( l ) ,  with modified, frequency-dependent, values of E.  

The new system describes a problem spatially rescaled by a factor I = 2, with respect 
to the original one. The actual computation yields 

2 ( w  + 1 + 2E1) ( w  + 1) 
w ‘ =  ( U  + 1) 2 

E ;  = Ei+l i = 1,2, . . . 

E1 E1 

( w +  1 E:  

E l  
(3) 

The value of E ;  stays equal to 1, by construction. The surviving cells are properly 
relabelled by an integer n’. Moreover it will be assumed that cell 0, at which diffusion 
starts, survives decimation (n’ = 0 for n = 0) in such a way that the inhomogeneous 
equation for 

Since different w are not coupled in ( l ) ,  in order to study the leading singular 
behaviour associated with scaling at long times, we can simply consider the w + 0 limit 
of (2)-(4) and perform a renormalisation group analysis on them. Thus the memory 
effects associated with the sub-leading dependences in (2), (3) and (4) do not need 
to be considered?, and we simply obtain 

remains of the same form as the one for Po. 

t For a discussion of corrections to the leading dynamical scaling behaviour, these effects should be taken 
into account. This would imply working with a functional equation, which transforms a general function 
of w, instead of simply U,  as well as with functional recursions for w-dependent E. 
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On the basis of (5)-(7) the dominant singular ,ehaviour for w + O  of the F, or 
related quantities, can be discussed: we only need to analyse the possible fixed points 
of (6) and their stability. 

The mapping (6) actually turns out to allow for a whole line of fixed points { E * } ,  

with 

i = 1,2, .  . . 

and E ?  ranging from 0 to +CO. The fixed point with ET = 0 corresponds to a situation 
in which the particle is trapped, because of the presence of infinite barriers. The fixed 
point with ET + CO, on the contrary, corresponds to zero height barriers, at all levels, 
except for the zeroth one ( E ~  = 1). In this case we should expect normal diffusion to 
take place. One can easily verify that the E ?  = 0 fixed point, under iteration of ( 6 ) ,  
attracts all initial { E }  for which ei becomes 0 for i 3 io 3 1 or ej+J + 0 for j + 03. On 
the other hand, a fixed point with ET > 0 attracts all those initial { E }  for which 
approaches 0 for j + CO, with 

One can also show that when 

E j + l  lim-= ~ 2 4  
Ej 

j-m 

the iteration of (6) leads to ET = CO and E T + ~ / E T  = C ( j  = 1,2 , .  . . ). 
On the basis of ( 5 )  and (7) it is easy to discuss the diffusion exponent pertaining, 

e.g., to the autocorrelation function, i.e. the probability Po(t)  of being back at cell 0, 
where diffusion started, after a long time t. We expect a scaling behaviour of the form 
Po( t )  - t-x'2 , for t + CO. The exponent x takes the value 1 for normal diffusion. Another 
interesting quantity describing diffusion is the range S ( t ) ,  i.e. the average number of 
distinct cells visited up to time t. In the case of one-dimensional normal diffusion this 
quantity scales simply as the reciprocal of Po( t ) .  Taking into account (7) for the case 
n = 0, n' = 0 and the above discussion of fixed points and stability, we easily conclude 
that the exponent x, describing the r+o3 behaviour of Po( t ) ,  is given, for our model, 
by 

x = 2 In 2/1n[2(2~:+ I) /&?]  (9) 
where ET characterises the fixed point to which the initial { E }  is attracted under iteration 
of (6)t. In deriving (9), the fact has been taken into account that, after n iterations 
of the transformation, the resulting rescaling factor for P approaches [ E ? / (  1 +2~?) ] " ,  
for large n. When E T  = 0, i.e. the case of trapping, x becomes zero, and increases up 
to the limit value 1, for E ?  + CO, as it should. It is easy to see that x = 1 if E ~ + , / E ~  = C > 5 
for j + w .  In particular if E' = R' our recursion equations ( 9 4 7 )  lead to the fixed 

t It should be noticed that the expression for the autocorrelation function, approximately derived by 
Huberman and Kerszberg (19851, turns out to be consistent with the exact exponent obtained here. 
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point E T  = R / (  1 -2R)  and E F + l / E F  = R with x = 2/(1 -log2 R )  for R <+while for R > 5 
E: = 00 and E:+~/E~ = R ( j  = 1,2, .  . . ) with x = I t .  It is this dependence of x on E T  
which leads to the expected temperature-dependent exponent (Huberman and 
Kerszberg 1985) if a thermal activation mechanism is assumed for hopping across the 
barriers, i.e. if one puts E , + ~ / E ,  - exp( -constant/ T ) .  

Values of x obtained by numerical simulations (Huberman and Kerszberg 1985) 
compare rather well with the exact result (9). Indeed, for E , + ~ / E ,  = e-2 and e-2 ’, these 
authors find x = 0.48 and 0.38, respectively. On the basis of (9), putting ET/( 1 + 2 ~ 7 )  = 
eC2 and e-2’, we obtain x = 0.515 and 0.409, respectively. 

We can also investigate the scaling of S (  t ) .  Indicating by Q,( t )  dt  the probability 
that the particle, starting from cell 0 at time 0, will reach cell i between times t and 
t + dt, without having been there before, we obviously have 

Pi( t )  = dt’ Q j (  t’)Poi( t - t ’ )  lo‘ 
where Poi is the autocorrelation function for a diffusion starting at cell i. Obviously 
S ( t )  will be given by 

On the basis of (10) and (11) and the previous results for P, we can conclude that, 
for small w 

c d i , ( w t ) / w f = S ( w ’ ,  { E ‘ } ) = { E * / [ 4 ( 1 + 2 & l ) ] } S ( w , { E } ) = ~  & w ) / w  
i ’  i 

with &w‘,  { E ’ } )  = Q ( w ,  {E}). The result (12) is consistent with $ ( U ) -  w-’”’’ for 
w + 0, i.e. with S (  t )  - tx ’2  for t + 00. Thus, in general S (  t ) x  Po( t ) - ’ ,  for t + a, as in 
the case of normal diffusion. 

We can also obtain the asymptotic behaviour of the average square distance travelled 
by the particle R2( t )  = Zipi( t ) i 2  in terms of x. By considerations similar to those above 
one finds R2( t ) -  t X  for t+m.  

In summary, we have presented an exact and complete renormalisation group 
analysis of the leading scaling properties of a one-dimensional model of ultradiffusion. 
An important physical feature of the model, namely the possibility of leading to 
temperature-dependent exponents, has been explained in terms of the existence of a 
line of fixed points. Implications of the above results for directly related problems, 
such as those concerning properties of electronic (tight-binding Schrodinger equation) 
or vibrational(phon0n) states, can be easily derived. 

In particular, for a vibrational eigenmode problem with a hierarchical interaction 
structure, like the one presented by the above hopping rates, x can be seen to coincide 
with the spectral dimension, i.e. with the exponent characterising the behaviour of the 
density of modes at low frequency (Rammal and Toulouse 1983). Ultradiffusion can 
actually be seen as a problem of diffusion on a fractal. In this case the geometrical 
fractal dimension (Mandelbrot 1982) of the cell lattice is trivially 1, i.e. coincides with 
the dimension of the embedding Euclidean space; the spectral dimension, on the other 
hand, is lower than 1, because of the presence of the infinite hierarchy of time scales. 

$ After the submission of this letter we became aware of the fact that Teitel and Domany (1985) were able 
to conjecture this result following approximate methods. However, their renormalisation group picture is 
not consistent with the exact one produced here (Maritan and Stella 1985). 
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